
1

PARAMETRIC ANALYSIS OF A HOVER TEST VEHICLE USING ADVANCED TEST GENERATION AND
DATA ANALYSIS

Karen Gundy-Burlet1, Johann Schumann2, Tim Menzies3, and Tony Barrett4

1NASA-Ames Research Center, Moffett Field, CA, 94035, Karen.Gundy-Burlet@nasa.gov
2RIACS/USRA, NASA-Ames Research Center, Moffet Field, CA 94035, Johann.M.Schumann@nasa.gov

3Lane CS & EE, West Virginia University, tim@menzies.us
4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, barrett@jpl.nasa.gov

ABSTRACT

Large complex aerospace systems are generally validated
in regions local to anticipated operating points rather than
through characterization of the entire feasible operational
envelope of the system. This is due to the large parameter
space, and complex, highly coupled nonlinear nature of
the different systems that contribute to the performance
of the aerospace system. We have addressed the fac-
tors deterring such an analysis by applying a combina-
tion of technologies to the area of flight envelop assess-
ment. We utilize n-factor (2,3) combinatorial parameter
variations to limit the number of cases, but still explore
important interactions in the parameter space in a sys-
tematic fashion. The data generated is automatically an-
alyzed through a combination of unsupervised learning
using a Bayesian multivariate clustering technique (Au-
toBayes) and supervised learning of critical parameter
ranges using the machine-learning tool TAR3, a treat-
ment learner. Covariance analysis with scatter plots and
likelihood contours are used to visualize correlations be-
tween simulation parameters and simulation results, a
task that requires tool support, especially for large and
complex models. We present results of simulation exper-
iments for a cold-gas-powered hover test vehicle.

1. INTRODUCTION

The Modular Common Bus (MCB) project is being de-
veloped as a family of small, low-cost spacecraft com-
posed of modular components. The intent is that sci-
ence instruments are solicited that meet the spacecraft’s
mass and power budget, rather than the current practice
of designing a custom spacecraft for each new science in-
strument. The modular design includes components that
enable a range of missions, including orbital and lander
type missions. Simulink/matlab is used to rapidly pro-
totype the design of the flight software and autogenerate
the onboard software for the vehicle. This process also

enhances the validation and verification of the vehicle re-
quirements and flight software. An initial prototype been
of the MCB lander configuration entitled the Hover Test
Vehicle (HTV) has been developed and flown in order to
assess this spacecraft development methodology.

As with any complex aerospace system, the performance
of the HTV depends on a large number of vehicle hard-
ware parameters including center of gravity, mass, mo-
ment of inertia, propulsion system, environment as well
as control system parameters such as gains and dead-
bands. A major task is to establish safe ranges for con-
trol system parameters that ensure a safe, on-target land-
ing given the expected variation in vehicle performance.
Exhaustive exploration of all parameter combinations is
infeasible for such a complex system, so, traditionally,
parameters are randomly sampled from a defined distri-
bution for a statistically significant number of runs (tradi-
tional Monte Carlo testing). Vast amounts of data can be
generated that way, and manual inspection of this data is
usually confined to gross features of the solution (such as
absolute compliance with requirements). Valuable trend
and parameter sensitivities are often ignored and anoma-
lous or unexpected data can easily be overlooked.

Researchers have recognized that “designers must be able
to examine various design alternatives quickly and eas-
ily among myriad and diverse configuration possibilities”
(1). The number of configuration possibilities within a
model, such as the HTV described above, can be daunt-
ingly large. A model with only 20 binary choices already
has 220 > 1, 000, 000 possible configurations, far beyond
the capability of human comprehension.

Part of the rapid prototyping process is to take advan-
tage of exercising these analyses early in the design cycle.
However the design space in this part of the life is gener-
ally very large, greatly expanding the analysis problem.
In these early analyses, system prototypes can interact
with physics models in order to quickly develop usage
policies for the software. Given the ready availability of
super-computers, and even inexpensive LINUX clusters,

2

analysts may have to analyze gigabytes of data generated
automatically from simulators. Thus, the usage policies
need to be generated in an efficient and accesible manner
for the analyst.

Accordingly, since 2000 (2), we have explored sampling
those configurations at random, running the resulting
model, scoring the output with some oracle, then using
data mining techniques to find the configuration options
that most improve model output, Here, we try a new com-
bination of methods and tools to study the configuration
parameters on a software controller for the HTV:

• An n-factor combinatorial test vector generation al-
gorithm to target tests toward regions of the param-
eter space where interactions among parameters are
key to performance (Section 3).

• The TAR3 minimal contrast set learner (3); is a su-
pervised learning method that returns the minimal
deltas between desired outcomes (hitting the target)
and all the other outcomes (Section 4.1).

• EM clustering algorithms that are autogenerated by
the AUTOBAYES program synthesis tool. Clustering
is an unsupervised learning method that obtains the
most probable estimates for class frequency and the
governing parameters (Section 4.3).

It was found that the combination of methods yielded
more information than any method used in isolation. The
operation of each algorithm can be intelligently informed
and usefully constrained by using the output of the other.
Combinatorial test exposes interactions between param-
eters, TAR3 focuses the analysis on a small number of
variables while AUTOBAYES reveals structures missed
by TAR3.

The rest of this paper discusses the problem domain and
how it was analyzed with combinatorial test, TAR3 and
AUTOBAYES. We show that data mining in combination
with functional requirements can be used to determine
best parameter ranges for such tasks as safely hovering
and landing the hover test vehicle.

2. TEST ARTICLE

The initial test article is a prototype of a lunar landing
configuration. The vehicle is comprised of a main pay-
load module and propulsion module. For this earth-based
testing, the propulsion module contains a pair of scuba
tanks that power one main and 6 attitude control sys-
tem thrusters. The payload module contains an inertial
measurement unit (IMU), avionics and communications
equipment. An image of the HTV is shown in Figure 1.
For a complete description of the vehicle, please see ref
(4).

The data mining techniques discussed in this paper have
been applied to the Hover Test Vehicle (HTV) simula-
tion. The HTV simulation has been developed in Math-
works Matlab and Simulink (5). It contains models of

Figure 1. Hover Test Vehicle

the vehicle including 6DOF dynamics, propulsion sys-
tem, effectors, sensors and avionics. Also included are
models of the ground data station, ground station, envi-
ronment and the flight bus. The flight software is com-
posed of guidance, navigation, control, state estimation
and vehicle health management models. The flight soft-
ware portion of the simulation is autocoded using Math-
works Real-Time Workshop Embedded Coder for control
of the physical flight vehicle.

The model-based development environment both speeds
the software development process and enhances the
workflow for validation and verification of the flight soft-
ware to NASA standards. An extensive unit test suite
was developed in conjunction with the models to verify
compliance with requirements. Parametric analysis of the
system was performed in order to assess flight readiness
and system margins in preparation to the flight tests.

Numerous parameter variations are considered in order
to determine the resilience of the algorithms to disper-
sions in mass properties, orientation and tank pressures.
Other analyses were performed in order to assess optimal
controller settings given the expected dispersions in ve-
hicle configuration. Requirements on the behavior of the
model are encoded in order to accumulate failure data,
and all solutions are rated relative to their adherence to re-
quirements, such as soft landing and minimum excursion

3

from the target point. The data mining techniques dis-
cussed here are intended to characterize the operational
envelop of the simulation and to find the ranges of param-
eters that lead to the lengthiest flights that landing close
to the target. The margin between the best ranges to the
failure points of each parameter can then be determined.

Both standard Monte Carlo and three-factor combinato-
rial techniques were used in this study. For the Monte
Carlo cases, one thousand cases were run, with random
values chosen for each of the input parameters from their
respective probability distributions. Here, the parameter
ranges are determined such that they are likely to include
failure cases. The output data encompass a wide range of
variables that are saved at each iteration point. Data rep-
resenting key parameters such as maximum altitude and
excursion, time of flight and landing velocities were ex-
tracted from the simulation for the analysis that follows.
Figure 2 shows a 3D representation of 1000 simulated
trajectories generated through a traditional Monte Carlo
style test generation technique. 1

Figure 2. HTV trajectories for 1000 simulation runs with
different simulation parameters.

3. COVERING THE OPTION SPACE

As mentioned previously, a model with 20 binary choices
has more than a million possible configurations. For the
ANTARES system it is anticipated that, in normal prac-
tice, the number of parameters to vary will greatly exceed
100, which results in an exponentially larger number of
possible configurations. Worse yet, when dealing with
simulations of physical systems, the input parameters are
often real values, making choices non-discrete and the
possible configurations infinite. So guaranteeing cover-
age of the option space is a non-trivial problem.

1In this paper, colors encode the class membership as determined by
the clustering algorithm. (Section 4.3, AUTOBAYES)

1 1 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 0
0 1 1 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 0 1
1 0 1 1 1 0 1 1 1 0 1 1 0 1 1 1 0 1 0 0
0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1
0 1 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 1 1 1
1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0
1 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0
1 0 1 1 1 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0
0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1

Figure 3. A 2-factor combinatorial test suite for 20 binary
parameters

3.1. Approach

We have explored two approaches toward covering the
option space, a standard Monte Carlo and a 3-factor com-
binatorial technique. The standard Monte Carlo approach
is simplest. It generates parameters for a simulation run
by randomly selecting from user defined probability dis-
tributions, such as Gaussian or uniform. The main draw-
back from this approach is a lack of any coverage guar-
antee, resulting in a need to run a large number of simu-
lations to attain a given level of user confidence. Unlike
the standard Monte Carlo approach, the combinatorial ap-
proach makes a coverage guarantee while attempting to
perform a minimal number of simulations. In the case of
an n-factor combinatorial, the guarantee is that any set-
ting of any n discrete parameters appears in at least one
of the simulations. For instance, a 2-factor combinato-
rial test suite for 20 binary parameters is shown in Fig-
ure 3. Note that there are only 11 tests, much less than
the million tests needed to exhaustively cover every com-
bination. The 3-factor case only increases the number of
tests to 26, still minuscule when compared to a million.

While the number of tests performed using the com-
binatorial approach is minuscule compared to exhaus-
tive testing, anecdotal evidence suggests that this small
number of tests is enough to catch most coding errors
(6; 7; 8). The underlying premise behind the combinato-
rial approach can be captured in the following four state-
ments.

• The simplest bugs in a program are triggered by a
single input parameter.

• The next simplest bugs are triggered by an interac-
tion of two input parameters.

• Progressively more obscure bugs involve interac-
tions between more parameters.

• Exhaustive testing involves trying all combinations
of all inputs.

So errors can be grouped into families depending on how
many parameters need specific settings to exercise the er-
ror. The n-factor combinatorial approach guarantees that
all errors involving the specific setting of n or fewer pa-
rameters will be exercised by at least one test. Applying

4

Problem Sizes Number of Tests Time
34 9 � 1 sec

313 19 � 1 sec
415 × 317 × 229 35 < 1 sec
41 × 339 × 235 29 < 1 sec

1020 216 1 sec
31000 48 22 sec

Table 1. Performance of test suite generator on 2-factor
combinatorial problems

an n-factor combinatorial approach to testing ANTARES
involved characterizing each real-valued parameter as a
partition of discrete ranges. When turning a computed
test into a simulation run, each range is replaced by a
real value chosen from a uniform distribution across that
range. The result is a multidimensional space of simula-
tion runs that projects down to a uniform distribution on
any plane of input parameters.

3.2. Implementation

To generate 2-factor combinatorial test suites there are a
number of algorithms in the literature (9). Our algorithm
is a generalization of IPO (10) to facilitate generating n-
factor combinatorial test suites in addition to a number of
features that a real world test suite generator would need
(11). These features include the ability to explicitly in-
clude particular combinations, explicitly exclude partic-
ular combinations, require n-factor combinatorial cover-
age of specific subsets of parameters, and tie the existence
of particular parameters to the setting of another parame-
ter.

The resulting algorithm is 1041 lines of documented Java
code with an example output that appears in Figure 3.
Even with these extra capabilities the algorithm generates
test suites that are comparable to those generated by the
more restricted systems in the literature. As shown in
Table 1 the code generates quality solutions very rapidly
on a 400MHz Windows laptop. In the problem sizes, the
XY syntax means that there are Y X-valued parameters.

4. DATA ANALYSIS TOOLS & METHODS

4.1. TAR3

Multi-Dimensional Optimization. BORE, short for
best or rest, takes instances scored on multiple utilities as
input and classifies each of them “best” or “rest”. BORE
maps the instance outputs into a hypercube, which has
one dimension for each utility.

BORE normalizes instances scored on N dimensions
into “zero” for “worst”, and “one” for “best”. The corner

of the hypercube at 1, 1, . . . is the apex of the cube and
represents the desired goal for the system. All the exam-
ples are scored by their normalized Euclidean distance to
the apex.

For this study, outputs were scored on one dimension-
distance to the desired target. Future studies will exploit
more of BORE’s facilities and will score outputs on other
dimensions such as average standard deviation on attitude
control, minimum use of propellant, minimal maximum
G-force, etc.

For each run i of the simulator, the n outputs Xi are nor-
malized to the range 0 . . . 1 as follows:

Ni = Xi−min(X)
max(X)−min(X)

The Euclidean distance of {N1, N2, ...} to the ideal po-
sition of {N1 = 1, N2 = 2, ...} is then computed and
normalized to the range 0..1 as follows:

Wi = 1−
√

N2
1 + N2

2 + ...√
n

where higher Wi (0 ≤ Wi ≤ 1) correspond to better
runs. This means that the Wi can only be improved by
increasing all of the utilities. To determine the “best” and
“rest” values, all the Wi scores were sorted according to
a given threshold BEST. The top BEST% are then classi-
fied as “best” and the remainder as “rest”.

Treatment Learning with TAR3. Once BORE has clas-
sified the data into best and rest, a data miner is used
to find input settings that select for the better outputs.
This study uses the TAR3 data miner since this learn-
ing method returns the smallest theories that most effect
the output. This means that TAR3 tries to determine a
minimal set of model parameters, which have the most
influence on the behavior of the simulation system.

TAR3 inputs a set of training examples E. Each example
maps a set of attribute ranges to some class symbol; i.e.,
{Ri, Rj , . . . → C}. The class symbols C1, C2, . . . are
stamped with some utility score that ranks the classes;
i.e., {U1 < U2 < . . . < UC}. With E, these classes
occur at frequencies F1, F2, . . . , FC where

∑
Fi = 1.

A “treatment” T of size M is a conjunction of attribute
ranges {R1∧R2 . . .∧RM}. Some subset of e ⊆ E is con-
sistent with the treatment. In that subset, the classes oc-
cur at frequencies f1, f2, . . . , fC . TAR3 seeks the small-
est treatment T which induces the biggest changes in
the weighted sum of the utilities times frequencies of the
classes. Formally, this is called the lift of a treatment:

lift =
∑

C UCfC∑
C UCFC

Classes in treatment learning get a score UC and the
learner uses this to assess the class frequencies resulting

5

from applying a treatment (i.e., applying constraints to
the inputs). In normal operation, a treatment learner does
controller learning that finds a treatment, which selects
for better classes and reject worse classes By reversing
the scoring function, treatment learning can also select
for the worse classes and reject the better classes. This
mode is called monitor learning since it finds the thing
we should most watch for.

Formally, treatment learning is a weighted-class mini-
mal contrast-set association rule learner. The treatments
are associations that occur with preferred classes. These
treatments serve to contrast undesirable situations with
desirable situation where more of the outcomes are fa-
vorable. Treatment learning is different to other contrast
set learners like STUCCO (12) since those other learners
don’t focus on minimal theories.

Conceptually, a treatment learner explores all possible
subsets of the attribute ranges looking for good treat-
ments. Such a search is infeasible in practice so the
art of treatment learning is quickly pruning unpromis-
ing attribute ranges. This study uses the TAR3 treatment
learner (13) that uses stochastic search to find its treat-
ments.

4.2. TAR3: Results

When applied to our spacecraft re-entry simulator,
BORE/TAR3 works as follows. Firstly, BORE gener-
ates a baseline distribution where the simulation outputs
are divided into two categories: 25% are classified as best
(closest to the target region) while the others were rest
(the remaining 75% of the examples). The first row in
Table 2 shows the initial setting; the worth of this sce-
nario is defined to be one.

Tr worth Constraint best rest
– 1.0 – 25% 75%
1 1.46 0 ≤ c ≤ 0.34 ∧ 82% 18%

0.68 ≤ f < 1.0
2 1.43 0.67 ≤ c < 1.0 ∧ 79% 21%

0 ≤ f < 0.34
3 1.15 0.85 ≤ c < 0.98 ∧ 44% 56%

0.67 ≤ f < 1.0

Table 2. TAR3 treatments

TAR3 then seeks the minimal delta between best and
rest. Several candidate deltas are generated and scored
according to their normalized worth with respect to the
baseline. The top three deltas as produced by TAR3 are
shown in Table 2. Each treatment consists of a conjunc-
tion of linear constraints on the input variables. For in-
puts adhering to the constraints of the treatment, their
effect is calculated. In this case, a restriction of the in-
put variables c and f (two of 24 simulation parameters)
to the shown ranges causes substantial improvement over
the initial setting, as the “best” and “rest” values, which

BORE produces, show. The relative improvement is in-
dicated by the worth of the treatment.

Note that:

• The deltas with the highest worth have the greatest
percentage of best examples.

• The top two treatments have very similar worths,
and the third much less so.

• The top two treatments comment on different ex-
tremes of the variables c, f .

• Only very few of the 24 variables in the simulation
appear in the treatments.

Of these effects, the last is most important. TAR3 is a fo-
cus tool that tells an analysts “of all the things you might
think about, these few variables are all you should be
considering”.

4.3. AutoBayes

A well-known method to find structure in large sets
of data is to perform clustering. Clustering is an un-
supervised learning method that tries to estimate class
membership matrix and class parameters, only given
the data. A variety of algorithms can be used, for
example, the EM-algorithm (14). A number of EM-
implementations is available (e.g., Autoclass (15), EM-
MIX (16), or MCLUST (17)) and could be used for this
problem.

However, in order to refine the statistical model (e.g.,
by incorporating other probability distributions for cer-
tain variables or to introduce domain knowledge), the
EM-algorithm needs to be modified substantially for
each problem variant, making experimentation a time-
consuming and error-prone undertaking. Thus, we are
using AUTOBAYES tool to produce customized variants
of the EM-algorithm.

AUTOBAYES (18) is a fully automatic program synthesis
system that generates efficient and documented C/C++
code from abstract statistical model specifications. De-
veloped at NASA Ames, AUTOBAYES is implemented in
approximately 90,000 lines of documented SWI Prolog
code. From the outside, it looks similar to a compiler for
a very high-level programming language: it takes an ab-
stract problem specification in the form of a (Bayesian)
statistical model and translates it into executable C/C++
code that processes the data or, in our case, can be called
from Matlab.

On the inside, however, it works quite different:
AUTOBAYES first derives a customized algorithm skele-
ton implementing the model and then transforms it into
optimized C/C++ code. The input specification is trans-
lated into a Bayesian Network (19), which is a compact
internal representation of the statistical model. Then,
the program synthesis system uses a schema based ap-
proach to translate the statistical problem into smaller

6

model mog as ’Multivar. Mix of Gaussians’;

const int D as ’number of variables’
const int N as ’number of data points’
const int C as ’number of classes’

with 1 < C; with C << N;

double phi(1..C) as ’class probabilities’
with 1 = sum(_i := 1..C, phi(_i));

double mu(1..D, 1..C), sigma(1..D, 1..C);

output int c(1..N) as ’latent variable’;
c(_) ˜ discrete(phi);

data double x(1..D, 1..N);
x(_i,_j) ˜ gauss(mu(_i,c(_j)),sigma(_i,c(_j)));

max pr(x|{phi, mu, sigma}) wrt {phi, mu, sigma};
Figure 4. AutoBayes specification for mixture model

problems and then, after symbolically solving subprob-
lems, to transform the instantiated customized algorithm
into efficient code. This task is heavily supported by a
domain-specific schema library, an elaborate symbolic
subsystem, and an efficient rewriting engine. After op-
timization C or C++ code is generated for various plat-
forms (e.g., embedded systems, Matlab, Simulink, or Oc-
tave). For our experiment, we used AutoBayes to gener-
ate code that can be called from Matlab as a MEX func-
tion.

The basic statistical model used for this study describes
the properties of the data in a fully declarative fashion:
for each problem variable of interest (i.e., observation
or parameter), properties and dependencies are specified
via probability distributions and constraints. Figure 4
shows how our clustering, a Gaussian mixture model
with diagonal covariance matrices can be represented in
AUTOBAYES’s specification language. The model as-
sumes that the data consists of N points in D dimen-
sions such that each point belongs to one of C classes;
the first few lines of the specification just declare these
symbolic constants and specify the constraints on them.
Each point x(1..C, j) (where .. corresponds to
Matlab’s subrange operator :, and i, j are index vari-
ables) is drawn independently from a univariate Gaus-
sian with mean mu(i,c(j)) and standard deviation
sigma(i,c(j)). The unknown distribution param-
eters can be different for each class and each dimension;
hence, we declare them as matrices. The unknown as-
signment of the points to the distributions (i.e., classes)
is represented by the latent variable c; since we are in-
terested in the classification results as well (and not only
the distribution parameters), c is declared as output. c
is distributed as a discrete distribution with the relative
class frequencies given by the also unknown vector phi.
Since each point must belong to a class, the sum of the
probabilities must be equal to one. Finally, we specify
the goal inference task, maximizing the conditional prob-
ability pr(x|{phi, mu, sigma}) with respect to the
parameters of interest, phi, mu, and sigma. This means
that we are interested in a maximum likelihood estimate
(MLE) of the model parameters.

If additional domain knowledge, e.g., priors on the mean
values of the features for each class are known, more

const double mu_0(1..D, 1..C) as ’expected means’;
const double kappa_0(1..D, 1..C) as ’confidence’;

with 1 < kappa_0(_,_);
const double sigma_0(1..D, 1..C);
double mu(1..D, 1..C);
mu(_i,_j) ˜ gauss(mu_0(_i,_j),

sigma(_i,_j)*kappa_0(_i,_j);
...
max pr({mu, sigma, x}|phi) wrt {phi, mu, sigma};

Figure 5. Additions to AutoBayes specification for
Gaussian mixture model with priors (additional domain
knowledge)

complicated models (e.g., maximum aposteriori esti-
mates, MAP) can be easily specified. Only a few lines
(Figure 5) with specification of the prior and an updated
maximization goal is necessary to produce a substantially
different data analysis algorithm. Note that all these mod-
els are completely declarative and do not require the user
to prescribe any algorithmic aspects of the estimation
program.

5. RESULTS

The data produced by the simulation are actually time se-
ries data over a large number of variables. Characteristic
parameters were extracted from the data stream and uti-
lized in this analysis. Data dimensions obviously include
the landing position, the sum of consumed fuel, maximal
structural loads, as well as a measure of the duration of
extended time intervals where the gravitational forces ex-
ceed a safe limit. With this preprocessing, we obtained a
data set with 10 dimensions. All data were normalized.

These data then were clustered using the Matlab/C code
as was generated by AUTOBAYES (790 lines of docu-
mented C code). The generated data analysis algorithm
determined that with 10 classes, a good separation can be
achieved.

The results of clustering, relative to time of flight and ini-
tial wet mass is shown in Figure 6. Different colors indi-
cate into which class a specific simulation run falls. The
classes are ranked using a penalty function based on land-
ing velocity and position error. Blue indicates the lowest
penalty function, while red indicates the highest penalty
function. The trend seen in the figure is that lower times
of flight generally have lower penalty functions. Wet
mass is key to time of flight, but other factors contribute
to the failure clusters exhibited in the plot. Here, the yel-
low through red classes show repeated violations of the
landing requirements. Overall statistics for the compli-
ance with performance requirements was:

• Maximum Position Excursion no greater than 3 M:
258 cases failed

• Vertical Velocity on Landing no greater than 4.0
M/S: 167 failed

7

• Horizontal velocity on Landing no greater than 1.0
M/S: 49 failed

Some of the cases failed more than one of the require-
ments, so the total number of cases without failure was
656. This simulation exhibited a sufficient range of ac-
ceptable/failure cases such that the key parameter values
defining the failure front chould be determined.

Figure 6. Relationship between Time of Flight and Initial
Wet Mass Colors indicate class membership.

To determine the root cause of the poor landing clusters,
TAR3 was utilized to determine the key parameters driv-
ing the simulation behavior. It identified several key pa-
rameters, that in conjunction with each other drove the
failure behavior. In particular, TAR3 identified the fol-
lowing combined set of parameter ranges that induced
failure:

• MAS cgy location wet=0.005951..0.007885

• MAS Iyz wet=-0.961177..-0.835669

• MAS wet=68.826103..69.489502

• INI rotx=0.928976..2.996930

This indicates that the initial mass, y center of gravity in
combination with one the Iyz moment of inertia and the
inital x rotation of the vehicle would cause unacceptible
behavior. This finding introduced a set of day-of-flight
flight rule restrictions on initial orientation and a more
careful evaluation of the center of gravity of the vehicle.
It was determined that reduced mass in the tanks would
lead to a lower y-cg offset, so a reduced tank pressure was
also utilized for the first free-hover test flight.

Figure 7 shows contours of “likelihood” for two parame-
ters identified as critical by TAR3. To generate this plot,
the input domain was discretized and the likelihood of
success was computed for each cell. Here, Likelihood
combines the overall probability of success in the whole

population, ratio of success in the local cell, and local
cell population. Likelihood will approach one in well-
populated cells with a high ratio of success, and will ap-
proach zero if either there is poor statistical support or a
low ratio of success. If a variable is not correlated, then
the local likelihood will approach the overall ratio of suc-
cess in the complete population. Using this metric, it is
seen that choosing a lower mass and carefully orienting
the vehicle improves the resiliance of the simulation to
dispersions in other key parameters.

Figure 7. Likelihood of successful flight relative to initial
x rotation and mass

6. CONCLUSIONS

In this paper, we have explored a combination two learn-
ers (AUTOBAYES and TAR3) to explore the internal state
space of some flight guidance software with combinato-
rial test techniques. The combination of these technolo-
gies revealed features that would have been invisible for
state of the practice. Further, the experiment suggests
some novel ways that these technologies could usefully
augment each other.

In the case of the first test flight of the hover test vehi-
cle, the combined technologies provided guidance as to
strategies that would increase the chances of a successful
test flight. In fact, the hover test vehicle performed in the
manner suggested by the simulation, and a successful set
of free-flying test flights were conducted.

More generally, given the growing importance of model-
based reasoning in software engineering, the ability to
use data miners to find and constrain the most important
parts of our software models, should prove to be a tech-
nique of growing importance in the years to come.

Acknowledgements Part of this work was carried out at
JPL, California Institute of Technology, under a contract
with NASA.

8

REFERENCES

[1] Gray, J., Lin, Y., and Zhang, J. Automating change
evolution in model-driven engineering. IEEE Com-
puter, 39(2):51–58, February 2006.

[2] Menzies, T. and Sinsel, E. Practical large
scale what-if queries: Case studies with soft-
ware risk assessment. In Proceedings ASE 2000,
2000. Available from http://menzies.us/
pdf/00ase.pdf.

[3] Menzies, T. and Hu, Y. Data mining for very
busy people. In IEEE Computer, November
2003. Available from http://menzies.us/
pdf/03tar2.pdf.

[4] Bell, J., E. A. Hover testing of a prototype small
planetary spacecraft. In Submitted to IAC’08, the
59th International Astronautical Congress, Glas-
gow, 2008.

[5] URL: http://www.mathworks.com/.

[6] Cohen, D., Dalal, S., Parelius, J., and Patton, G.
The combinatorial design approach to automatic
test generation. Software, IEEE, 13(5):83–88, Sep
1996.

[7] Dunietz, I. S., Ehrlich, W. K., Szablak, B. D., Mal-
lows, C. L., and Iannino, A. Applying design of
experiments to software testing: experience report.
In ICSE ’97: Proceedings of the 19th international
conference on Software engineering, pages 205–
215, 1997.

[8] Wallace, D. R. and Kuhn, D. R. Failure modes in
medical device software: an analysis of 15 years
of recall data. International Journal of Reliability,
Quality and Safety Engineering, 8(4), 2001.

[9] Mats Grindal, Jeff Offutt, S. F. A. Combination test-
ing strategies: a survey. Software Testing, Verifica-
tion and Reliability, 15(3):167–199, 2005.

[10] Tai, K. and Lie, Y. A test generation strategy for
pairwise testing. IEEE Transactions on Software
Engineering, 28(1):109–111, 2002.

[11] Czerwonka, J. Pairwise testing in real world, prac-
tical extensions to test case generators. In Pro-
ceedings of 24th Pacific Northwest Software Quality
Conference, 2006.

[12] Bay, S. and Pazzani, M. Detecting change in
categorical data: Mining contrast sets. In Pro-
ceedings of the Fifth International Conference on
Knowledge Discovery and Data Mining, 1999.
Available from http://www.ics.uci.edu/
∼pazzani/Publications/stucco.pdf.

[13] Hu, Y. Treatment learning, 2002. Masters the-
sis, Unviersity of British Columbia, Department of
Electrical and Computer Engineering. In prepera-
tion.

[14] Dempster, A. P., Laird, N. M., and Rubin, D. B.
Maximum likelihood from incomplete data via the
EM algorithm (with discussion). J. of the Royal Sta-
tistical Society series B, 39:1–38, 1977.

[15] Cheeseman, P. and Stutz, J. Bayesian classification
(AutoClass): Theory and results. In Fayyad, U. M.,
Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy,
R., editors, Proc. 2nd Intl. Conf. Knowledge Discov-
ery and Data Mining, pages 153–180. AAAI Press,
1996.

[16] McLachlan, G., Peel, D., Basford, K. E., and
Adams, P. The EMMIX software for the fitting of
mixtures of normal and t-components. J. Statistical
Software, 4(2), 1999.

[17] Fraley, C. and Raftery, A. E. MCLUST: Software
for model-based clustering, density estimation, and
discriminant analysis. Technical Report 415, De-
partment of Statistics, University of Washington,
October 2002.

[18] Fischer, B. and Schumann, J. AutoBayes: A sys-
tem for generating data analysis programs from
statistical models. J. Functional Programming,
13(3):483–508, May 2003.

[19] Buntine, W. L. Operations for learning with graph-
ical models. J. AI Research, 2:159–225, 1994.

